Cours du Prof. Dr. Anand Dessai

Algèbre linéaire I

Série 10 À rendre avant le jeudi 4 decembre, 14h

Le test écrit aura lieu le lundi 15 décembre dans la séance d'exercices

Exercice 1

a) Montrez que pour tout $A \in M(m \times n, \mathbb{K}), B, B' \in M(r \times m, \mathbb{K})$ et $\lambda \in \mathbb{K}$ on a

$$(B+B')\cdot A = B\cdot A + B'\cdot A$$
 et $\lambda(B\cdot A) = (\lambda B)\cdot A = B\cdot (\lambda A)$.

b) Calculez tous les produits possibles de deux matrices parmi les matrices suivantes :

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \qquad C = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \qquad D = (3, 2, 1).$$

c) Soit $A = \begin{pmatrix} 1 & 2\lambda & 3 \\ 0 & -1 & -2\lambda \end{pmatrix} \in M(2 \times 3, \mathbb{C})$ une matrice avec un paramètre $\lambda \in \mathbb{C}$. Calculez $A \cdot A^T$ et $A^T \cdot A$.

Exercice 2

a) Montrez que

$$\det \begin{pmatrix} b_{11} & * \\ & \ddots & \\ 0 & b_{nn} \end{pmatrix} = b_{11} \cdot \ldots \cdot b_{nn}.$$

- b) Soit $\det(B) \neq 0$. Montrez que l'application $F: M(n \times n, \mathbb{K}) \to \mathbb{K}, A \mapsto \frac{\det(A \cdot B)}{\det(B)}$, dépend de façon linéaire de chaque ligne.
- c) Calculez le déterminant de

$$\left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 3 & 2 & 1 \end{array}\right).$$

Exercice 3

Soit
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 une matrice. Calculez A^2 , A^3 , A^4 et A^{127} .

Exercice 4

Soit
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 5/3 & -4/3 \\ -4 & -2/3 & 7/3 \end{pmatrix}$$
 et soit $\phi : \mathbb{R}^3 \to \mathbb{R}^3, x \mapsto B \cdot x$.

a) Soit $v_1 = (0, 2, 1)^T$, $v_2 = (1, 0, 3)^T$. Calculez $\phi(v_1)$ et $\phi(v_2)$. Completéz les deux vecteurs en une base $\mathcal{A} = (v_1, v_2, v_3)$, dans laquelle la matrice $M_{\mathcal{A}}^{\mathcal{A}}(\phi)$ est égal à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

Donc $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ est une dilatation de facteur 3 le long de la direction v_3 , et de facteur 1 (pas de changement) dans le plan span (v_1, v_2)

b) Trouvez une autre base $\mathcal{A}'=(v_1',v_2',v_3')$ de \mathbb{R}^3 avec $v_3'=(-2,2,-5)^T$, dans laquelle la matrice $M_{\mathcal{A}'}^{\mathcal{A}'}(\phi)$ est aussi diagonale.

Exercice 5

Lisez attentivement les corrections de la série précédente.

- a) Expliquez une ou plusieurs erreurs, qui ont fait que vous n'avez pas atteint un objectif d'apprentissage.
- b) Rédigez une correction de l'exercice, qui nous montre que vous avez maintenant atteint l'objectif d'apprentissage.

Répétez cet exercice autant de fois que nécessaire.