

Cours du Prof. Anand Dessai

Algèbre et géométrie I

Davide Bolognini & Jonathan Wermelinger

Bonus Série 13 À rendre avant le jeudi 21 décembre, 16h

Exercice 1 Trouvez le polynôme minimal sur $\mathbb Q$ des éléments suivants :

$$2\sqrt{3}, \quad \sqrt{2} + \sqrt{5}, \quad e^{\frac{2\pi i}{p}}.$$

Exercice 2 Soient $K \subset L$ une extension de corps et $\alpha, \beta \in L$. Montrez que α et β sont algébriques sur K si et seulement si $\alpha + \beta$ et $\alpha\beta$ sont algébriques sur K.

Exercice 3 Soit $\varphi \in]0, 2\pi[$ une nombre réel tel que $e^{i\varphi}$ est transcendant. Montrez que $e^{i\varphi/3}$ n'est pas constructible à la règle et au compas à partir de $M = \{0, 1, e^{i\varphi}\}$.

Exercice 4 Soit $K \subset F$ une extension de corps et $\alpha \in F$ un élément algébrique. Soit $K[\alpha] \subset F$ l'anneau engendré par K et α et soit $K(\alpha) \subset F$ le corps engendré par K et α . On considère l'homomorphisme d'anneaux suivant :

$$\Phi: K[t] \longrightarrow F$$
$$f \longmapsto f(\alpha).$$

- 1. L'application Φ est-elle injective ?
- 2. Montrez qu'il existe un polynôme unitaire $f \in K[t]$ tel que $K[t]/(f) \cong K[\alpha]$. (Ce polynôme f est appelé polynôme minimal de α sur K.)
- 3. Montrez que (f) est premier, donc maximal et donc que f est irréductible.
- 4. Montrez que $K[\alpha] = K(\alpha)$.