

Cours du Prof. Anand Dessai

Algèbre et géométrie I

Davide Bolognini & Jonathan Wermelinger

Série 12 À rendre avant le jeudi 14 décembre, 16h

Exercice 1 Déterminez si les nombres suivants sont algébriques ou transcendants :

$$\frac{1}{5\sqrt{3}}$$
, $\frac{2}{e}$, $i+\sqrt{5}$.

Exercice 2 Soit $K \subset L$ une extension de corps telle que [L:K] est premier. Montrez que $L = K(\alpha)$ pour tout $\alpha \in L - K$.

Exercice 3

- 1. Y a-t-il un corps avec 15 éléments?
- 2. Y a-t-il un anneau intègre avec 12 éléments?
- 3. Construisez un corps à 8 éléments.

Exercice 4 Soient V un espace vectoriel sur le corps \mathbb{K} et $\varphi:V\to V$ un endomorphisme. Montrez les assertions suivantes :

- (a) V muni de la multiplication $p(X)v := p(\varphi)(v)$ est un $\mathbb{K}[X]$ -module.
- (b) Si V est de dimension fini, alors le $\mathbb{K}[X]$ -module V est un module de torsion. (Indication: Considérez le polynôme caractéristique de φ .)

Exercice 5 [Bonus] Soit V un espace vectoriel sur K de dimension n et soit $\varphi: V \to V$ un endomorphisme. On muni V de la structure de K[X]-module donnée dans l'exercice 4.

(a) Utilisez le théorème de classification des modules sur un anneau principal (et intègre) pour montrer que

$$V = \bigoplus_{p} V(p),$$

où les p sont des polynômes irréductibles unitaire de K[X] (pris dans un système de représentants d'élément premiers \mathcal{P}), et tel que chaque

$$V(p) \cong K[X]/(p^{\nu_1}) \oplus \cdots \oplus K[X]/(p^{\nu_p})$$

est déterminé de manière unique (à isomorphisme près) par les $1 \leq \nu_1 \leq \cdots \leq \nu_p$.

(b) Montrez que la somme de tous les degrés des p^{ν_s} apparaissants dans la décomposition ci-dessus est égale à n, c.-à-d.

$$\sum_{p} (\deg(p^{\nu_1}) + \dots + \deg(p^{\nu_p})) = n.$$

(c) Montrez que le polynôme minimal de φ est égal à

$$\prod_{p} p^{\nu_p}$$

où le produit est pris sur tous les polynômes irréductibles p apparaissant dans la décomposition de V donnée au point (a).

(d) Montrez qu'on peut trouver une base de V telle que la matrice de φ exprimée dans cette base est de la forme

et où $M_{p^{\nu_s}} \in \mathcal{M}(m_{p,s} \times m_{p,s}; K)$ avec $m_{p,s} := \deg(p^{\nu_s})$.